This article provides an in-depth examination of the Structured Kernel and TensorIterator in PyTorch, key components for optimizing tensor operations. We will delve into the implementation aspects, including op declaration, meta
and impl
steps in Structured Kernel, and the construction and computation processes in TensorIterator.
In a previous article, we briefly introduced the concept of the structured kernel in Structured Kernel and Stub. We also delved into the foundation of structured kernel, the TensorIterator, in Copy and TensorIterator.
This article aims to intertwine these two concepts, offering a comprehensive exploration into the implementation of both the structured kernel and the TensorIterator.
Let’s start with code:
1
2
3
4
| import torch
A = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
B = A.sum(dim=0, keepdim=True)
|
Upon execution, the sum_dim_IntList
within TensorBody.h
is invoked.
1
2
3
4
| // torch/include/ATen/core/TensorBody.h
inline at::Tensor Tensor::sum(at::OptionalIntArrayRef dim, bool keepdim, c10::optional<at::ScalarType> dtype) const {
return at::_ops::sum_dim_IntList::call(const_cast<Tensor&>(*this), dim, keepdim, dtype);
}
|
After dispatch, we reach the CPU’s structured kernel implementation of sum_dim_IntList
. The exact location might vary depending on the compilation options used.
Note: If you’re intrigued but not yet familiar with the dispatch process, I recommend starting with Dispatching Contiguous Operators for a foundational understanding.
Note: Compiling PyTorch is necessary to view the generated code.
1
2
3
4
5
6
7
| // build/aten/src/ATen/RegisterCPU.cpp
at::Tensor wrapper_CPU_sum_dim_IntList(const at::Tensor & self, at::OptionalIntArrayRef dim, bool keepdim, c10::optional<at::ScalarType> dtype) {
structured_sum_out_functional op;
op.meta(self, dim, keepdim, dtype);
op.impl(self, dim, keepdim, dtype, op.outputs_[0]);
return std::move(op.outputs_[0]);
}
|
The structured kernel framework in PyTorch has three primary components:
- Op Declaration: Declaring an op, like
structured_sum_out_functional
. - Op Meta: Prepares the operation.
- Op Implementation: Executes the computation based on TensorIterator.
After these steps, the computed result is obtained and returned.
Let’s see structured_sum_out_functional
first
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| // build/aten/src/ATen/RegisterCPU.cpp
struct structured_sum_out_functional final : public at::native::structured_sum_out {
void set_output_strided(/* params */) override {
outputs_[output_idx] = create_out(sizes, strides, options);
// ...
}
void set_output_raw_strided(/* params */) override {
outputs_[output_idx] = create_out(sizes, strides, options);
// ...
}
const Tensor& maybe_get_output(int64_t output_idx) override {
return outputs_[output_idx];
}
std::array<Tensor, 1> outputs_;
};
Tensor create_out(IntArrayRef sizes, IntArrayRef strides, const TensorOptions &options) {
if (strides.empty()) {
return at::detail::empty_cpu(sizes, options);
} else {
return at::detail::empty_strided_cpu(sizes, strides, options);
}
}
|
This operation originates from at::native::structured_sum_out
.
1
2
3
4
5
6
7
8
9
| // build/aten/src/ATen/ops/sum_native.h
struct TORCH_API structured_sum_out : public at::meta::structured_sum_dim_IntList {
void impl(const at::Tensor & self, at::OptionalIntArrayRef dim, bool keepdim, c10::optional<at::ScalarType> dtype, const at::Tensor & out);
};
// torch/include/ATen/ops/sum_meta.h
struct TORCH_API structured_sum_dim_IntList : public at::impl::MetaBase {
void meta(const at::Tensor & self, at::OptionalIntArrayRef dim, bool keepdim, c10::optional<at::ScalarType> dtype);
};
|
Through code analysis, it’s apparent that declaring an operation involves defining an instance of the MetaBase class.
MetaBase serves as the foundational class for all structured kernel classes. This includes both structured_sum_out_functional
and TensorIteratorBase.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| // torch/include/ATen/TensorMeta.h
struct TORCH_API MetaBase {
// ...
virtual const Tensor& maybe_get_output(int64_t output_idx) = 0;
virtual void set_output_strided(/* params */) {
TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
}
virtual void set_output_raw_strided(/* params */) {
TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
}
// Alias for `set_output_strided`, but with contiguous strides.
void set_output_contiguous(/* params */) {
auto strides = c10::contiguous_strides(sizes);
set_output_strided(output_idx, sizes, strides, options, names);
}
// Returns a reference to an undefined tensor if there is no presupplied output
const Tensor& maybe_get_output() {
return maybe_get_output(0);
}
virtual ~MetaBase() = default;
};
|
Key functions within MetaBase that are typically overridden include:
set_output_raw_strided
: Employed when the kernel is capable of handling outputs with arbitrary strides.set_output_strided
: Utilized in other cases. (For contiguous strides, set_output_contiguous
is invoked, which in turn calls this function.)
In the case of structured_sum_out_functional
, these functions are overridden with outputs_[output_idx] = create_out(sizes, strides, options);
. The invocation of these functions will be further explored subsequently.
Let’s look back to the structured kernel, the second step is to invoke op.meta(self, dim, keepdim, dtype);
1
2
3
4
5
6
7
8
9
10
| // aten/src/ATen/native/ReduceOps.cpp
// void structured_sum_dim_IntList::meta
TORCH_META_FUNC2(sum, dim_IntList)
(const Tensor& self, OptionalIntArrayRef opt_dim, bool keepdim, optional<ScalarType> opt_dtype) {
// `maybe_get_output()` gets an undefined output
// `infer_dtype_from_optional` infers the dtype from self and output(if defined)
auto out_dtype = infer_dtype_from_optional(self, opt_dtype, maybe_get_output());
resize_reduction(*this, self, opt_dim, keepdim, out_dtype);
}
|
Then we call resize_reduction
:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| // aten/src/ATen/native/ReduceOpsUtils.h
static void resize_reduction(
impl::MetaBase& meta,
const Tensor& self,
OptionalIntArrayRef opt_dims,
bool keepdim,
ScalarType out_dtype) {
// Generate DimVector from opt_dims (if defined) or ndim
DimVector dims_ = at::native::make_dim_vector(opt_dims, self.dim());
// "Wraps" each dim in-place to support negative index
maybe_wrap_dims(dims_, self.dim());
// Infer the output shape for sum with `dims_` (based on std::bitset)
auto shape = get_reduction_shape(self, dims_, keepdim);
// Using inferred shape to declare an output
// After doing this, the output is allocated and defined
meta.set_output_raw_strided(0, shape, {}, self.options().dtype(out_dtype));
// ...
}
|
Within the op.meta
function, a critical step is the use of meta.set_output_raw_strided
to define the output of structured kernel.
Once the output is successfully allocated, we are ready to call op.impl
function.
The third step is where the actual computation takes place.
1
2
3
4
5
6
7
8
9
10
11
| // aten/src/ATen/native/ReduceOps.cpp
// void structured_sum_out::impl
TORCH_IMPL_FUNC(sum_out) (/* params... */) {
auto iter = meta::make_reduction_from_out_ty(self, result, opt_dim, keepdim, result.scalar_type());
if (iter.numel() == 0) {
result.zero_();
} else {
sum_stub(iter.device_type(), iter);
}
}
|
Here, meta::make_reduction_from_out_ty
is utilized to construct a TensorIterator:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| // aten/src/ATen/native/ReduceOpsUtils.h
static C10_UNUSED TensorIterator make_reduction_from_out_ty(/* params... */) {
// ...
auto in_dtype = gpu_lowp_to_f32 ? self.scalar_type() : out_dtype;
return make_reduction(self, result, opt_dims, keepdim, in_dtype);
}
static TensorIterator make_reduction(
const Tensor& self,
const Tensor& result,
OptionalIntArrayRef opt_dims,
bool keepdim,
ScalarType in_dtype) {
int64_t ndim = self.dim();
auto mask = at::native::make_dim_mask(opt_dims, ndim);
// View the result (expanding one dim if the keepdim is false)
auto viewed_result = at::native::review_reduce_result(result, ndim, mask, keepdim);
if (self.scalar_type() == in_dtype) {
return TensorIterator::reduce_op(viewed_result, self);
}
return TensorIterator::reduce_op(viewed_result, self.to(in_dtype));
}
|
Why we need to view the result?
When keepdim
is set to false, the resultant shape (previously inferred) is reduced, which does not align with the shape expected by TensorIterator. So the result must be appropriately viewed accordingly (expanding one dim), as if keep_dim
were true.
Post invocation of TensorIterator::reduce_op
, a TensorIterator instance is established. We will introduce this later.
Next, the sum_stub
is called. After dispatching through the device, we reach the kernel of the sum:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| // aten/src/ATen/native/cpu/SumKernel.cpp
void sum_kernel_impl(TensorIterator &iter) {
// if bool dtype ...
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
ScalarType::BFloat16, ScalarType::Half, iter.dtype(), "sum_cpu", [&] {
cascade_sum</*ignore_nan=*/false, scalar_t>(iter);
});
// Note: The AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(...) is same as:
[&] {
const auto& the_type = iter.dtype();
constexpr const char* at_dispatch_name = "sum_cpu";
at::ScalarType _st = ::detail::scalar_type(the_type);
switch (_st) {
case at::ScalarType::Double: { /* ... */ }
case at::ScalarType::Float: {
do {
// some check logic ...
using scalar_t __attribute__((__unused__)) =
c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::Float>;
return [&] { cascade_sum<false, scalar_t>(iter); }();
}
}
case at::ScalarType::ComplexDouble: { /* ... */ }
// ...
default: { /* ... */ }
}
}()
}
|
The execution of the computation is then carried out by cascade_sum
. A key aspect here is the passing of an anonymous function to the TensorIterator’s parallel_reduce
member function, which will also be discussed in more detail later.
1
2
3
4
5
6
7
8
9
| // Custom floating point sum for better accuracy
template <bool ignore_nan, typename scalar_t>
void cascade_sum(TensorIterator &iter) {
iter.output_base().fill_(scalar_t(0));
iter.parallel_reduce(
[&](char** data, const int64_t* strides, int64_t size0, int64_t size1) {
/* anonymous function implementation... */
});
}
|
Once the cascade_sum
function completes its execution, the sum result is obtained. All things done, return back to user.
Having grasped the basic mechanism of the structured kernel, we can now delve deeper into the TensorIterator.
Back to our structured kernel:
1
2
3
4
5
6
7
| // build/aten/src/ATen/RegisterCPU.cpp
at::Tensor wrapper_CPU_sum_dim_IntList(/* params */) {
structured_sum_out_functional op;
op.meta(self, dim, keepdim, dtype);
op.impl(self, dim, keepdim, dtype, op.outputs_[0]);
return std::move(op.outputs_[0]);
}
|
In op.impl
, we utilize TensorIterator for the sum
operation. But how does TensorIterator achieve this?
Utilizing a TensorIterator involves two main steps:
- Build a TensorIterator, preparing for calculation.
- call for calculation, use
cpu_kernel
/ gpu_kernel
or parallel_reduce
Note: The TensorIterator system is intricate. We won’t delve into all implementation specifics here. For a deeper understanding, explore the PyTorch source code, or check out my simplified version in MicroTorch.
There are multiple ways to build a tensor; let’s consider reduce_op
:
1
2
3
4
5
6
7
8
9
10
11
12
| // aten/src/ATen/TensorIterator.cpp
TensorIterator TensorIterator::reduce_op(TensorBase& out, const TensorBase& a) {
TORCH_INTERNAL_ASSERT(out.defined());
return TensorIteratorConfig()
.set_check_mem_overlap(false)
.add_owned_output(out)
.add_owned_input(a)
.resize_outputs(false)
.is_reduction(true)
.promote_inputs_to_common_dtype(true)
.build();
}
|
We create a TensorIteratorConfig instance, set attributes, then invoke build()
to obtain a TensorIterator.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
| // torch/include/ATen/TensorIterator.h
class TORCH_API TensorIteratorConfig final {
public:
// ...
// Important: the outputs have to be added before the inputs.
TensorIteratorConfig& add_output(const TensorBase& output) {
return add_borrowed_output(output);
}
TensorIteratorConfig& add_input(const TensorBase& input) {
return add_borrowed_input(input);
}
// ...
TensorIteratorConfig& is_reduction(const bool _is_reduction) {
is_reduction_ = _is_reduction;
return *this;
}
// ...
TensorIterator build() {
TensorIterator iter;
iter.build(*this);
return iter;
}
private:
SmallVector<c10::MaybeOwned<TensorBase>, 4> tensors_;
int num_outputs_ = 0;
int num_inputs_ = 0;
// ...
bool check_mem_overlap_ = true;
bool allow_cpu_scalars_ = false;
bool is_reduction_ = false;
bool resize_outputs_ = true;
bool check_all_same_dtype_ = true;
bool check_all_same_device_ = true;
bool enforce_safe_casting_to_output_ = false;
bool enforce_linear_iteration_ = false;
bool promote_inputs_to_common_dtype_ = false;
bool promote_integer_inputs_to_float_ = false;
bool cast_common_dtype_to_outputs_ = false;
bool check_mem_overlap_ = true;
};
|
The config properties:
check_mem_overlap (default: true): checks for memory overlap between input and output tensors. If detected, an error is thrown.
allow_cpu_scalars (default: false): When set to true, this allows CPU scalar values (Wrapped number usually) to be passed as kernel parameters when executing device code, like within CUDA kernels.
is_reduction (default: false): Indicates whether the TensorIterator is being used for reduction operations, such as summing or finding maximum values.
resize_outputs (default: true): This allows output tensors to be resized as needed to match the expected output of the operation.
check_all_same_dtype (default: true): This ensures that all input and output tensors have the same data type. If they differ, type promotion or conversion might be necessary to proceed with the operation.
check_all_same_device (default: true): Verifies that all tensors are located on the same device.
enforce_safe_casting_to_output (default: false): When enabled, this checks that the common_dtype_
used in computations can be safely cast to the output tensor’s data type, safeguarding against data corruption through unsafe type conversions.
enforce_linear_iteration (default: false): If true, tensor iteration follows a C-style contiguous memory layout (last dimension iterates fastest). This iteration order can be less efficient and may even prevent vectorization. So only use if the correctness of your kernel depends on it.
promote_inputs_to_common_dtype (default: false): If set, the common_dtype_
is computed and all input tensors are promoted to common_dtype_
before the operation.
promote_integer_inputs_to_float (default: false): If enabled, and if the common_dtype_
of the iterator is an integer type, it will be promoted to a default floating-point type. Eg. int_tensor / 3 = float_tensor
cast_common_dtype_to_outputs (default: false): If true, the results of operations are first calculated in a temporary common data type, then converted back to the original data type of the output tensors.
The config.build()
function internally calls iterator.build()
:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
| void TensorIteratorBase::build(TensorIteratorConfig& config) {
// ...
// Transfers `tensors_` from config to the iterator's `SmallVector<OperandInfo, 4> operands_`
populate_operands(config);
// Set is_output and is_read_write flags on appropriate tensors
mark_outputs();
// Checks that the output memory does not overlap
compute_mem_overlaps(config);
// Compute outnames.
compute_names(config);
// Computes the shape of broadcasting. (setting `shape_` variable)
compute_shape(config);
// If output needs resizing (different from `shape_`), it's marked
mark_resize_outputs(config);
// Computes device (taking the first non-CPU device as common device) and dtype
compute_types(config);
// Attempts to quickly build output tensor
if (!fast_set_up(config)) {
// Computes the stride(stride_bytes) for each tensors
compute_strides(config);
// Re-order tensor's shape and stride, with `stride[0]` as the fastest progression dimension (stride ascending)
reorder_dimensions();
// allocate the output tensor if it's not provided
allocate_or_resize_outputs();
// Coalesce adjacent dimensions when possible
if (!is_meta_) coalesce_dimensions();
}
if (is_meta_) return;
// ...
for (auto& op : operands_) {
TORCH_INTERNAL_ASSERT(op.tensor_base().defined());
op.data = op.tensor_base().data_ptr();
}
}
|
We previously discussed broadcast logic. Here, our focus is on fast_set_up
, stride_bytes
, and PyTorch’s methods for output allocation/resizing and dimension coalescing
.
First, for fast_set_up
:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
| // aten/src/ATen/TensorIterator.cpp
// This function tries to do a fast setup to avoid needless reordering of dimensions or coalecsing
bool TensorIteratorBase::fast_set_up(const TensorIteratorConfig& config) {
FastSetupType setup_type = compute_fast_setup_type(config);
if (setup_type == FastSetupType::NONE) return false;
// allocate memory for output, memory format depends on setup_type
switch (setup_type) {
case FastSetupType::CONTIGUOUS:
{
for (const auto i : c10::irange(num_outputs_)) {
auto& op = operands_[i];
// ...
set_output_raw_strided(i, shape_, {}, original_options(op).memory_format(MemoryFormat::Contiguous), names_);
}
break;
}
// ... channels last
default:
TORCH_INTERNAL_ASSERT(false, "Unsupported fast setup type", c10::to_string((int)setup_type));
}
// If we can do a fast setup, coalescing dimensions to 1
if (ndim() > 1){
has_coalesced_dimensions_ = true;
}
if (ndim() >= 1) {
shape_[0] = numel();
shape_.resize(1);
}
for (auto& op : operands_ ) {
auto element_size_in_bytes = op.tensor_base().element_size();
op.stride_bytes.resize(ndim());
if (ndim()>0) {
op.stride_bytes[0] = element_size_in_bytes;
}
}
return true;
}
|
We use compute_fast_setup_type
to assess the memory layout of tensors. If all of the tensors are contiguous, we get a FastSetupType::CONTIGUOUS
.
Then we can coalesce the dimensions to 1
directly, implying the tensor can be treated as linear storage.
If fast setup isn’t feasible, we calculate stride_bytes
for tensors, reorder the dimensions, then coalesce dimensions to 2D for simpler computation.
1
2
3
4
5
6
| if (!fast_set_up(config)) {
compute_strides(config);
reorder_dimensions();
allocate_or_resize_outputs();
if (!is_meta_) coalesce_dimensions();
}
|
Firstly, calculate the operation’s stride_bytes
:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| // aten/src/ATen/TensorIterator.cpp
// Set the operation's `stride_bytes`
// Eg: a float tensor with shape[2, 3], strides[3, 1] and we get [12, 4]
void TensorIteratorBase::compute_strides(const TensorIteratorConfig& config) {
for (auto& op : operands_) {
if (op.tensor_base().defined() && !op.will_resize) {
// ...
for (const auto i : c10::irange(original_shape.size())) {
if (original_shape[i] == 1 && shape_[offset + i] !=1) {
op.stride_bytes[offset + i] = 0;
} else {
op.stride_bytes[offset + i] = original_stride[i] * element_size_in_bytes;
}
}
}
}
}
|
Next, reorder dimensions using reorder_dimensions
and resize or allocate outputs with allocate_or_resize_outputs()
.
Note: In allocate_or_resize_outputs()
, if output requires resizing or is undefined, we utilize invert_perm
to determine the original shape and strides, then configure the output using set_output_raw_strided
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
| // aten/src/ATen/TensorIterator.cpp
// Sort dimensions based on `stride_bytes` in ascending order.
// The fastest moving dimension is strides[0] instead of strides[ndim - 1].
// Eg: An input tensor with shape=[3, 2] -> [2, 3], stride_bytes=[8, 4] -> [4, 8]
void TensorIteratorBase::reorder_dimensions() {
perm_.resize(ndim());
// ...
// initialize perm with n-1, n-2, ..., 1, 0
std::iota(perm_.rbegin(), perm_.rend(), 0);
// returns 1 if the dim0 should come after dim1, -1 if dim0 should come
// before dim1, and 0 if the comparison is ambiguous.
auto should_swap = [&](size_t dim0, size_t dim1) {/* ... */};
// calculation for get a permute order
for (const auto i : c10::irange(1, ndim())) {
int dim1 = i;
for (int dim0 = i - 1; dim0 >= 0; dim0--) {
int comparison = should_swap(perm_[dim0], perm_[dim1]);
if (comparison > 0) {
std::swap(perm_[dim0], perm_[dim1]);
dim1 = dim0;
} else if (comparison < 0) {
break;
}
}
}
// perform re-ordering of shape and strides
permute_dimensions(perm_);
}
// If the output is not defined or marked `should_resize`, we will use `perm_`
// to compute the original shape and stride_bytes for it,
// then `set_output_raw_strided`
void TensorIteratorBase::allocate_or_resize_outputs() {
for (const auto i : c10::irange(num_outputs_)) {
auto& op = operands_[i];
if (!op.tensor_base().defined() || op.will_resize) {
// ...
int element_size = elementSize(op.target_dtype);
// initialize output's stride_bytes
op.stride_bytes = compatible_stride(element_size);
// check if permutation is an fully inverted order
// for example: contiguous output
bool inverted = true;
for (const auto j : c10::irange(ndim())) {
if (perm_[j] != ndim() - j - 1) {
inverted = false;
break;
}
}
// Invert the permutation caused by reorder_dimensions.
auto tensor_shape = invert_perm(shape_);
if (inverted) {
set_output_raw_strided(i, tensor_shape, {}, original_options(op), names_);
} else {
auto tensor_stride = invert_perm(op.stride_bytes);
for (const auto dim : c10::irange(ndim())) {
tensor_stride[dim] /= element_size;
}
set_output_raw_strided(i, tensor_shape, tensor_stride, original_options(op), names_);
}
op.current_dtype = op.target_dtype;
} else if (op.tensor_base().defined()) {
// Even if we don't need to resize, we still need to call
// set_output_raw_strided so that we properly set guard and propagate names
set_output_raw_strided(i, op.tensor_base().sizes(), {}, original_options(op), names_);
}
}
}
|
Lastly, coalesce_dimensions
is applied to minimize dimensions, enhancing later computation efficiency.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
| // aten/src/ATen/TensorIterator.cpp
// Try coalescing the adjacent dims.
// For example:
// `shape_` = [64, 4, 5, 1], `output.stride_bytes` = [4, 256, 1024, 5120],
// `input.stride_bytes` = [80, 4, 16, 5120]
// Changes to `shape_` = [64, 20],
// `output.stride_bytes` = [4, 256], `input.stride_bytes` = [80, 4]
void TensorIteratorBase::coalesce_dimensions() {
if (ndim() <= 1) return;
// We can coalesce two adjacent dimensions if:
// shape[n] / shape[n+1] == 1 or
// shape[n] * stride[n] == stride[n + 1] for all of the tensors
auto can_coalesce = [&](int dim0, int dim1) { /* ... */ };
// replace all of the operand's stride at dim0 with its stride at dim1
auto replace_stride = [&](int dim0, int dim1) {
for (const auto i : c10::irange(ntensors())) {
auto& stride = operands_[i].stride_bytes;
stride[dim0] = stride[dim1];
}
};
// Starting from the `prev_dim` pointer, traversing each dim afterwards,
// trying to coalesce as many dimensions as possible.
int prev_dim = 0;
for (const auto dim : c10::irange(1, ndim())) {
if (can_coalesce(prev_dim, dim)) {
if (shape_[prev_dim] == 1) {
replace_stride(prev_dim, dim);
}
shape_[prev_dim] *= shape_[dim];
} else {
prev_dim++;
if (prev_dim != dim) {
replace_stride(prev_dim, dim);
shape_[prev_dim] = shape_[dim];
}
}
}
// shrink shape_ and stride_bytes
shape_.resize(prev_dim + 1);
for (const auto i : c10::irange(ntensors())) {
operands_[i].stride_bytes.resize(ndim());
}
has_coalesced_dimensions_ = true;
}
|
Once a TensorIterator instance is constructed, it infers the broadcast shape, allocates the output, and coalesces dimensions. With these preparations, we can proceed to the actual computation.
We continue with the sum
operation as our example.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| // aten/src/ATen/native/cpu/SumKernel.cpp
// Custom floating point sum for better accuracy
template <bool ignore_nan, typename scalar_t>
void cascade_sum(TensorIterator &iter) {
iter.output_base().fill_(scalar_t(0));
iter.parallel_reduce(
[&](char** data, const int64_t* strides, int64_t size0, int64_t size1) {
int64_t in_strides[] = { strides[1], strides[3] };
int64_t out_strides[] = { strides[0], strides[2] };
// Use stride_bytes and pointers to calculate sum ...
});
}
|
In this process, we provide an anonymous function as a loop2d_t
parameter to iter.parallel_reduce()
:
1
2
3
4
5
6
7
8
9
10
11
12
13
| // aten/src/ATen/native/TensorIteratorReduce.cpp
void TensorIteratorBase::parallel_reduce(loop2d_t loop) {
// ...
int64_t numel = this->numel();
if (numel < at::internal::GRAIN_SIZE || at::get_num_threads() == 1 ||
at::in_parallel_region()) {
serial_for_each(loop, {0, numel});
} else if (use_two_pass_reduction(*this)) {
// ...
} else {
// ...
}
}
|
PyTorch typically employs a parallel mechanism for computation. Data are segmented into several ranges
within parallel_reduce
. We won’t delve into the specifics of this segmentation here.
Assuming numel < GRAIN_SIZE
, we examine the serial_for_each
function:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
| // aten/src/ATen/TensorIterator.cpp
void TensorIteratorBase::serial_for_each(loop2d_t loop, Range range) const {
if (range.size() == 0) return;
const auto ntensors = this->ntensors();
const auto ndim = this->ndim();
c10::SmallBuffer<char*, 4> ptrs(ntensors);
c10::SmallBuffer<int64_t, 8> strides(ntensors * std::max(ndim, 2));
// convert data ptrs to char* type, and store in `tensor_ptrs`.
at::get_base_ptrs(ptrs.data(), operands_);
// extract op.stride_bytes and store in `strides`
at::get_strides(strides.data(), operands_, ndim);
at::internal::serial_for_each(
shape_, strides, ptrs.data(), ptrs.size(), loop, range);
}
// torch/include/ATen/TensorIteratorInternal.h
inline void serial_for_each(
IntArrayRef shape,
IntArrayRef strides,
char** base_ptrs,
size_t ntensors,
typename TensorIteratorBase::loop2d_t loop,
Range range) {
const auto ndim = shape.size();
if (ndim <= 1) {
// ...
} else {
// `ptrs` stores the addresses that need to be processed in current batch.
c10::SmallBuffer<char*, 4> ptrs(ntensors);
// DimCounter divides range into several parts for calculation
auto counter = DimCounter(shape, range);
// `is_done` judges whether the offset is greater than range.end
while (!counter.is_done()) {
// Calculating the starting address of each tensor under the current batch
get_data_ptrs(
ptrs.data(), {base_ptrs, ntensors}, strides, counter.values);
// Get the steps that should be processed in current batch.
// Try to fetch the **maximum** range of steps
auto step = counter.max_2d_step();
// call for the anonymous function to calculate the result
loop(ptrs.data(), strides.data(), step[0], step[1]);
// updates offset and dim_offsets according to the steps we fetched
counter.increment(step);
}
}
}
|
serial_for_each
primarily functions to divide the data in the current range
into multiple batches, guided by DimCounter. It then passes the data pointers to the anonymous function for computation.
This discussion omits the intricate calculations of pointers and addresses for specific batches. Those interested in a deeper dive can refer to my detailed article here, which presents a comprehensive example for clarity.
Once all batches have been processed, the cascade_sum
call concludes, thereby completing the sum kernel calculation.