
Update confidential designator here

Version number here V00000

Wentao Ye
Machine Learning Engineer, Red Hat

vLLM Committer

Saša Zelenović
Developer Marketing and Advocacy

Manager, Red Hat

Michael Goin
Principal Engineer, Red Hat

vLLM Committer

Special Topic: Intro to batch invariant in vLLM
January 8, 2026

vLLM Office Hours #39

Bram Wasti
Software Engineer, Meta

Update confidential designator here

Version number here V00000

Upcoming vLLM Office Hours Sessions

▸ [Dec 18] vLLM 2025 Retrospective & 2026
Roadmap

▸ [TODAY] Intro to batch invariant in vLLM

▸ [Jan 15] Intro to Speculators, a unified library for
building and storing speculative decoding
algorithms for LLMs with vLLM

▸ [Jan 22] LLM Compressor update

▸ [Jan 29] Deep Dive into the vLLM CPU
offloading connector

Register for all sessions here.

View previous recordings here.

2

vLLM Project Update

▸ vLLM-Omni v0.12.0rc1

▸ vLLM Semantic Router v0.1

▸ vLLM v0.13.0

What’s new in the past two weeks?

https://www.youtube.com/watch?v=-5n9_IxkLxo
https://www.youtube.com/watch?v=-5n9_IxkLxo
https://red.ht/office-hours
https://www.youtube.com/playlist?list=PLbMP1JcGBmSHxp4-lubU5WYmJ9YgAQcf3

Update confidential designator here

Version number here V00000

▸ Head over to vllm.ai/events to see
upcoming office hours, meetups,
conferences, etc.

3

Reminder: New vLLM Website & Events Calendar

http://vllm.ai/events

Update confidential designator here

Version number here V00000

Broad Model Support (>100 arches)

4

The High-Throughput and Memory-Efficient inference and serving engine for LLMs

What is vLLM?

DeepSeek

Wide Hardware Support

CUDA ROCm Gaudi/XPU TPU Neuron CPU

$ uv pip install vllm --torch-backend=auto
$ vllm serve deepseek-ai/DeepSeek-V3.1 -tp 8

https://github.com/vllm-project/vllm

Llama GPT-OSSQwen Gemma Granite

Ascend

Phi Cohere

Most Popular LLM Serving Engine
● 65K+ GitHub stars, 800+ PRs/month
● 500K++ GPUs deployed 24/7
● 2K+ contributors, 10K+ members in slack.vllm.ai

Mistral

>2000 Contributors from >50 major companies

Diverse Project Ecosystem

LLM Compressor

vLLM Semantic Router

Metal MACA RBLN Spyre MLU Kunlun

Flexible Device Parallelism
Tensor, Pipeline, Expert, Data, Context Parallel

Disagg Prefill/Decode, Disagg Encoder

https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
http://slack.vllm.ai

Update confidential designator here

Version number here V00000

5

vLLM-Omni v0.12.0rc1 Pre-Release
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1

https://docs.vllm.ai/projects/vllm-omni/en/latest/

https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://docs.vllm.ai/projects/vllm-omni/en/latest/
https://docs.vllm.ai/projects/vllm-omni/en/latest/
https://docs.vllm.ai/projects/vllm-omni/en/latest/

Update confidential designator here

Version number here V00000

6

vLLM Semantic Router v0.1 “Iris” Release
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html

https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html

Update confidential designator here

Version number here V00000

7

Thanks to the many clean, from-scratch implementations of vLLM!
https://github.com/GeeeekExplorer/nano-vllm

https://github.com/Wenyueh/MinivLLM
https://github.com/skyzh/tiny-llm

https://github.com/GeeeekExplorer/nano-vllm
https://github.com/GeeeekExplorer/nano-vllm
https://github.com/GeeeekExplorer/nano-vllm
https://github.com/Wenyueh/MinivLLM
https://github.com/skyzh/tiny-llm
https://github.com/skyzh/tiny-llm
https://github.com/skyzh/tiny-llm

Update confidential designator here

Version number here V00000

Model Support

▸ New models: BAGEL (AR only) (#28439), AudioFlamingo3 (#30539),

JAIS 2 (#30188), Nemotron latent MoE (#30203).

▸ Tool parsers: DeepSeek-V3.2 (#29848), Gigachat 3 (#29905), Holo2

reasoning (#30048).

▸ Model enhancements: Qwen3-VL embeddings (#30037), Qwen3-VL

EVS (Efficient Video Sampling) (#29752), DeepSeek V3.2 proper

drop_thinking logic (#30490) and top-k fix (#27568).

▸ Task expansion: Automatic TokenClassification model conversion

(#30666), Ultravox v0.7 transformer projector (#30089).

▸ Quantization: BitsAndBytes for Qwen3-Omni-MoE (#29896).

▸ Speculative decoding: Eagle/Eagle3 Transformers backend (#30340),

Mamba selective_state_update spec decode (#29488).

8

442 commits from 207 contributors, including 61 new contributors!

What’s new in vLLM v0.13.0

Engine Core

▸ Compilation via compile_ranges for selective kernel compilation (#24252).

▸ Prefix caching: xxHash high-performance hash option (#29163).

▸ Attention: PrefixLM support for FlexAttention (#27938) and

TritonAttention (#30386), CUDA graphs for 3D Triton attention (#28306).

▸ Batch invariance: FA2 and LoRA batch-invariant support (#30018),

TRITON_MLA without prefix-caching (#29125).

▸ Pooling: Chunked prefill for ALL pooling tasks (#27145), multi-vector

retrieval API (#26686).

▸ Model Runner V2: Min-p (#30171), NaN detection in logits (#30187).

▸ Speculative decoding: Medusa GPU-CPU sync avoidance (#29723),

async spec-decode improvements (#29624).

▸ Whisper: ~3x speedup vs v0.12.0, Encoder batching (#29421),

FULL_DECODE_ONLY CUDA graph (#30072), CPU support (#30062).

▸ Performance: Fused blockwise quant RMS norm (#27883), MoE LoRA

loading reduction (#30243), encoder cache optimization (#30475), CPU

KV offloading streams (#29013).

https://github.com/vllm-project/vllm/pull/28439
https://github.com/vllm-project/vllm/pull/30539
https://github.com/vllm-project/vllm/pull/30188
https://github.com/vllm-project/vllm/pull/30203
https://github.com/vllm-project/vllm/pull/29848
https://github.com/vllm-project/vllm/pull/29905
https://github.com/vllm-project/vllm/pull/30048
https://github.com/vllm-project/vllm/pull/30037
https://github.com/vllm-project/vllm/pull/29752
https://github.com/vllm-project/vllm/pull/30490
https://github.com/vllm-project/vllm/pull/27568
https://github.com/vllm-project/vllm/pull/30666
https://github.com/vllm-project/vllm/pull/30089
https://github.com/vllm-project/vllm/pull/29896
https://github.com/vllm-project/vllm/pull/30340
https://github.com/vllm-project/vllm/pull/29488
https://github.com/vllm-project/vllm/releases/tag/v0.13.0
https://github.com/vllm-project/vllm/pull/24252
https://github.com/vllm-project/vllm/pull/29163
https://github.com/vllm-project/vllm/pull/27938
https://github.com/vllm-project/vllm/pull/30386
https://github.com/vllm-project/vllm/pull/28306
https://github.com/vllm-project/vllm/pull/30018
https://github.com/vllm-project/vllm/pull/29125
https://github.com/vllm-project/vllm/pull/27145
https://github.com/vllm-project/vllm/pull/26686
https://github.com/vllm-project/vllm/pull/30171
https://github.com/vllm-project/vllm/pull/30187
https://github.com/vllm-project/vllm/pull/29723
https://github.com/vllm-project/vllm/pull/29624
https://github.com/vllm-project/vllm/pull/29421
https://github.com/vllm-project/vllm/pull/30072
https://github.com/vllm-project/vllm/pull/30062
https://github.com/vllm-project/vllm/pull/27883
https://github.com/vllm-project/vllm/pull/30243
https://github.com/vllm-project/vllm/pull/30475
https://github.com/vllm-project/vllm/pull/29013

Update confidential designator here

Version number here V00000

Hardware & Performance

▸ NVIDIA Blackwell Ultra SM103 (GB300) support (#30484).

▸ Several DeepSeek/Kimi optimizations:

･ DeepEP High-Throughput CUDA graph enabled by default: 5.3%

throughput, 4.4% TTFT improvement (#29558)

･ DeepGEMM fused layout: 10.7% TTFT improvement (#29546)

･ DeepGEMM experts init: 3.9% TTFT improvement (#30494)

･ group_topk kernel: 2% throughput improvement (#30159)

･ Sparse prefill kernel for DeepSeek-V3.2 FP8 KV-cache (#27532)

･ MLA FP8 Quant (#29795), broadcast k_nope/k_pe (#29710)

▸ CPU: Whisper support (#30062), Arm vectorized exp (#30068), x86

CPU wheel pipeline (#28848).

▸ AMD ROCm: Aiter quantization kernels (#25552), torch.compile

layernorm/silu + FP8 quant (#25693), Triton ScaledMM fallback

(#26668), MXFP4 w4a4 inference (#29775).

▸ Intel XPU: wNa16 compressed tensors (#29484).

▸ Build: CUDA 13 aarch64 wheels (#30341), Docker kernel build stage

(#29452), Ascend NPU Docker (#30015).

9

442 commits from 207 contributors, including 61 new contributors!

What’s new in vLLM v0.13.0

Large Scale Serving & Disaggregated Prefill/Decode

▸ KV connectors: Mooncake Transfer Engine (#24718), cache reset via

/reset_prefix_cache (#27170), KV events (#28309), failure recovery

config (#26813).

▸ NIXL: Compatibility checking in handshake (#29503), large batch proxy

support (#28782).

▸ EPLB: NVFP4 support (#29804), algorithm abstraction (#26471).

▸ Multi-node: External launcher mode (#29833).

▸ Hybrid allocator: Optional KV connector integration (#29805).

▸ Performance: silu_mul_per_token_group_quant_fp8 kernel for DP/EP

(#29470).

https://github.com/vllm-project/vllm/pull/30484
https://github.com/vllm-project/vllm/pull/29558
https://github.com/vllm-project/vllm/pull/29546
https://github.com/vllm-project/vllm/pull/30494
https://github.com/vllm-project/vllm/pull/30159
https://github.com/vllm-project/vllm/pull/27532
https://github.com/vllm-project/vllm/pull/29795
https://github.com/vllm-project/vllm/pull/29710
https://github.com/vllm-project/vllm/pull/30062
https://github.com/vllm-project/vllm/pull/30068
https://github.com/vllm-project/vllm/pull/28848
https://github.com/vllm-project/vllm/pull/25552
https://github.com/vllm-project/vllm/pull/25693
https://github.com/vllm-project/vllm/pull/26668
https://github.com/vllm-project/vllm/pull/29775
https://github.com/vllm-project/vllm/pull/29484
https://github.com/vllm-project/vllm/pull/30341
https://github.com/vllm-project/vllm/pull/29452
https://github.com/vllm-project/vllm/pull/30015
https://github.com/vllm-project/vllm/releases/tag/v0.13.0
https://github.com/vllm-project/vllm/pull/24718
https://github.com/vllm-project/vllm/pull/27170
https://github.com/vllm-project/vllm/pull/28309
https://github.com/vllm-project/vllm/pull/26813
https://github.com/vllm-project/vllm/pull/29503
https://github.com/vllm-project/vllm/pull/28782
https://github.com/vllm-project/vllm/pull/29804
https://github.com/vllm-project/vllm/pull/26471
https://github.com/vllm-project/vllm/pull/29833
https://github.com/vllm-project/vllm/pull/29805
https://github.com/vllm-project/vllm/pull/29470

Update confidential designator here

Version number here V00000

API & Frontend

▸ Responses API: MCP type infrastructure (#30054), Browser/Container

MCP tools (#29989), full MCP Python loop (#29798), extra body

parameters (#30532).

▸ Configuration: AttentionConfig replaces VLLM_ATTENTION_BACKEND env var

(#26315).

▸ Chat templates: DeepSeek-V3.2 (#29837), DeepSeek-V3.2 developer

tools (#30040).

▸ Anthropic API: Streaming fixes (#29971, #30266).

▸ Embeddings: Binary format with encoding_format=bytes_only (#30249),

multiple image/audio per request (#29988), tokenization_kwargs

override (#29794).

▸ Metrics: Prefill KV compute metric excluding cached tokens (#30189).

▸ Profiling: Layer-wise NVTX (#29990), profiling CLI config (#29912).

▸ UX: Better OOM errors (#28051), ModelConfig validation (#30213),

distributed executor errors (#30140).

10

442 commits from 207 contributors, including 61 new contributors!

What’s new in vLLM v0.13.0

Breaking Changes & Deprecations

This release includes deprecation removals, PassConfig flag renames, and

attention configuration changes from environment variables to CLI arguments.

Please review the breaking changes section carefully before upgrading.

▸ PassConfig flags renamed per RFC #27995 (#29646)

▸ Attention env vars → CLI args: VLLM_ATTENTION_BACKEND replaced with --

attention-backend (#26315)

▸ Removed -O.xx flag (#29991)

▸ Removed deprecated plugin/compilation fields (#30396)

▸ Removed deprecated task, seed, MM settings (#30397)

▸ Removed embed_input_ids/embed_multimodal fallbacks (#30458)

▸ Removed tokenizer setter (#30400)

▸ Deprecations: merge_by_field_config (#30035, #30170), --convert reward

→ --convert embed (#30463)

https://github.com/vllm-project/vllm/pull/30054
https://github.com/vllm-project/vllm/pull/29989
https://github.com/vllm-project/vllm/pull/29798
https://github.com/vllm-project/vllm/pull/30532
https://github.com/vllm-project/vllm/pull/26315
https://github.com/vllm-project/vllm/pull/29837
https://github.com/vllm-project/vllm/pull/30040
https://github.com/vllm-project/vllm/pull/29971
https://github.com/vllm-project/vllm/pull/30266
https://github.com/vllm-project/vllm/pull/30249
https://github.com/vllm-project/vllm/pull/29988
https://github.com/vllm-project/vllm/pull/29794
https://github.com/vllm-project/vllm/pull/30189
https://github.com/vllm-project/vllm/pull/29990
https://github.com/vllm-project/vllm/pull/29912
https://github.com/vllm-project/vllm/pull/28051
https://github.com/vllm-project/vllm/pull/30213
https://github.com/vllm-project/vllm/pull/30140
https://github.com/vllm-project/vllm/releases/tag/v0.13.0
https://github.com/vllm-project/vllm/issues/27995
https://github.com/vllm-project/vllm/pull/29646
https://github.com/vllm-project/vllm/pull/26315
https://github.com/vllm-project/vllm/pull/29991
https://github.com/vllm-project/vllm/pull/30396
https://github.com/vllm-project/vllm/pull/30397
https://github.com/vllm-project/vllm/pull/30458
https://github.com/vllm-project/vllm/pull/30400
https://github.com/vllm-project/vllm/pull/30035
https://github.com/vllm-project/vllm/pull/30170
https://github.com/vllm-project/vllm/pull/30463

Update confidential designator here

Version number here V00000

11

Thank you to the over 2000 contributors!
https://blog.vllm.ai/2025/12/15/vllm-epd.html

https://blog.vllm.ai/2025/12/15/vllm-epd.html
https://blog.vllm.ai/2025/12/15/vllm-epd.html
https://blog.vllm.ai/2025/12/15/vllm-epd.html

Update confidential designator here

Version number here V00000

12

A thank you gift: PR Release Finder
Ever wondered "Which release first included my PR?"

Just enter your PR number or URL to track your code's journey into production.
vllm.ai/pr-lookup

http://vllm.ai/pr-lookup
http://vllm.ai/pr-lookup
http://vllm.ai/pr-lookup

Wentao Ye
Machine Learning Engineer, Red Hat

vLLM Committer

Intro to batch invariance in vLLM

Today’s special topic:

Bram Wasti
Software Engineer, Meta

vLLM contributor

Why does this happen?

Even with a fixed seed and temperature=0?

Reason 1: Rounding errors of Floating Points

Reason 2: Non-Associativity

Reason 1+2 -> Reduction order matters

Sum with atomic add on GPU

Guaranteed for all elements, but the order might change

Reason 3: Continuous Batching

For LLM inference:

No atomic add operator during forward, good for single request

Reason 3: Continuous Batching

Batching multiple requests together matters

Reason 3: Continuous Batching

Naive batching, where would S5 be?

Reason 3: Continuous Batching

S5 now starts in a different place

How to solve this? Batch invariance

It ensures the output of a model is deterministic and independent of the

batch size or the order of requests in a batch (fixed reduction order).

How to Achieve Batch Invariance?

Make every kernel involving reductions batch invariant

For LLM inference, three kernels dominate

- RMSNorm

- Matrix Mul

- Attention

Key 1: RMSNorm

In naive solution, parallel through rows

Key 1: RMSNorm

In large batch, this works well

Key 1: RMSNorm

In small batch, wasting

compute resources

Key 1: RMSNorm

In small batch, we usually optimize using Split-K

Key 1: RMSNorm

However, as x grows, the reduction order changes

Key 1: RMSNorm

The easiest way is just not to do the split and keep the order

Key 2: Matrix Mul

The naive matrix mul follows the batch invariant logic, good for large batch

Key 2: Matrix Mul

Similar problem when batch size is small

Key 2: Matrix Mul

In small batch, we usually optimize using Split-K

Key 2: Matrix Mul

This breaks the order of reduction as K grows

Key 2: Matrix Mul

Solution: compile one kernel configuration and use that for all

shapes (fixed tile, fixed split-k etc)

Key 3: Attention

Parallel along Q in naive solution,

which is good for batch invariance

Key 3: Attention

Calculation for K, then added to the K-V cache

(L1,D) (L2,D) (L1+L2,D)

Key 3: Attention

Similar problem when batch is small

Key 3: Attention

We usually optimize using Split-K
(1000,D)

Key 3: Attention

Determinism broken as L increases
(L,D)

Key 3: Attention

So we should use a fixed split size

e.g., 256

Key 3: Attention

Detailed comparison

Batch invariance summary

Every kernel is batch invariant, with fixed reduction order

**Simplified due to time constraints.

Tracking the Latest Updates

https://github.com/vllm-project/vllm/issues/27433

Features, optimizations, model validations…

Any help is greatly appreciated!

https://github.com/vllm-project/vllm/issues/27433
https://github.com/vllm-project/vllm/issues/27433
https://github.com/vllm-project/vllm/issues/27433

Contribution to Batch Invariance in vLLM

https://github.com/vllm-project/vllm/issues/27433

Help needed for validations of more models.

1. Test a model using the current script

2. Submit a PR updating the document

https://github.com/vllm-project/vllm/issues/27433
https://github.com/vllm-project/vllm/issues/27433
https://github.com/vllm-project/vllm/issues/27433

References

[1]: https://docs.vllm.ai/en/latest/features/batch_invariance/ "Batch Invariance -

vLLM"

[2]: https://vllm.ai/ "vLLM"

[3]: https://arxiv.org/html/2506.09501v2 "Understanding and Mitigating Numerical

Sources of Nondeterminism in LLM Inference"

[4]: https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/

"Defeating Nondeterminism in LLM Inference - Thinking Machines Lab"

[5]: https://github.com/vllm-project/vllm/issues/27433 "[Feature]: Batch Invariant

Feature and Performance Optimization · Issue #27433 · vllm-project/vllm · GitHub"

[6]: https://blog.vllm.ai/2025/11/10/bitwise-consistent-train-inference.html "No More

Train-Inference Mismatch: Bitwise Consistent On-Policy Reinforcement Learning

with vLLM and TorchTitan | vLLM Blog"

[7]:https://insujang.github.io/2024-01-07/llm-inference-continuous-batching-and-

pagedattention/ LLM Inference: Continuous Batching and PagedAttention

Bitwise Consistent On-Policy Reinforcement

Learning with vLLM + TorchTitan

Reinforcement Learning (Basics)

Ignore all these variable letter choices :P

Reinforcement Learning (PPO)

Advantage calculation is tricky

https://arxiv.org/abs/1707.06347

Reinforcement Learning (PPO -> GRPO)

https://arxiv.org/pdf/2402.03300

Reinforcement Learning (IS Weights)

Running off-policy needs a correction term!

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/#trpo

Reinforcement Learning (GRPO)

- Sparse rewards, last step in training pipeline

- Huge dependency on the execution of the main model

- Correction terms galore, masking numerical instability

- This blog comes out…

https://fengyao.notion.site/off-policy-rl

Reinforcement Learning (numerical exactness)

What if we ditch correction terms and use batch invariance?

https://blog.vllm.ai/2025/11/10/bitwise-consistent-train-inference.html

Reinforcement Learning (numerical exactness)

Works!

https://blog.vllm.ai/2025/11/10/bitwise-consistent-train-inference.html

Other stability tricks / Next Steps

Important to note: there are other ways to stabilize RL training

- Other types of IS weights

- Use fp16 https://arxiv.org/pdf/2510.26788

- Rejection sampling magic

Next Steps

- Improve performance / hardware support

- Improve compilation support (native PyTorch)

- Figure out a unification scheme for training/inference

https://arxiv.org/pdf/2510.26788

Update confidential designator here

Version number here V00000

Contribute to key vLLM features
Comment and review PRs that are interesting to you. Join the discussion
on RFCs. Check out “good first issue” tags.

Give Us Feedback
We’ll email you today’s recording as soon as it’s ready. Respond and tell
us what we are doing right and what we can do better with vLLM office
hours. Or comment on this slide!

Join vLLM Developer Slack
Ask questions and engage with us via Slack. Join here.

Join Red Hat’s vLLM Mission
Red Hat wants to bring open-source LLMs and vLLM to every enterprise
on the planet. We are looking for vLLM Engineers to help us accomplish
our mission. Apply here.

Get involved with the vLLM Community

55

https://github.com/vllm-project/vllm/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22
https://slack.vllm.ai/
https://www.redhat.com/en/jobs

Update confidential designator here

Version number here V00000

56

Thank you, and see you in
two weeks!

Wentao Ye

Machine Learning Engineer, Red Hat

vLLM Committer

Saša Zelenović

Principal PMM, Red Hat

Michael Goin

Principal Engineer, Red Hat

vLLM Committer

Bram Wasti

Software Engineer, Meta

	幻灯片 1: vLLM Office Hours #39
	幻灯片 2: What’s new in the past two weeks?
	幻灯片 3: Reminder: New vLLM Website & Events Calendar
	幻灯片 4: What is vLLM?
	幻灯片 5: vLLM-Omni v0.12.0rc1 Pre-Release
	幻灯片 6: vLLM Semantic Router v0.1 “Iris” Release
	幻灯片 7: Thanks to the many clean, from-scratch implementations of vLLM!
	幻灯片 8: What’s new in vLLM v0.13.0
	幻灯片 9: What’s new in vLLM v0.13.0
	幻灯片 10: What’s new in vLLM v0.13.0
	幻灯片 11: Thank you to the over 2000 contributors!
	幻灯片 12: A thank you gift: PR Release Finder
	幻灯片 13: Intro to batch invariance in vLLM
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55: Get involved with the vLLM Community
	幻灯片 56: Thank you, and see you in two weeks!

