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What's new in the past two weeks?

vLLM Project Update Upcoming vLLM Office Hours Sessions

> vLLM-Omni v0.12.0rcl » [Dec18]vLLM 2025 Retrospective & 2026

Roadmap

» vLLM Semantic Router vO.1

» vLLMVO.13.0 » [TODAY] Intro to batch invariant in vLLM

» [Jan 15] Intro to Speculators, a unified library for

building and storing speculative decoding
algorithms for LLMs with vLLM

» [Jan 22] LLM Compressor update

» [Jan 29] Deep Dive into the vLLM CPU

offloading connector
Register for all sessions here.

View previous recordings here.


https://www.youtube.com/watch?v=-5n9_IxkLxo
https://www.youtube.com/watch?v=-5n9_IxkLxo
https://red.ht/office-hours
https://www.youtube.com/playlist?list=PLbMP1JcGBmSHxp4-lubU5WYmJ9YgAQcf3

Reminder: New vLLM Website & Events Calendar

’LLM Docs Blog Events Contact () &
. [ Event Calendar
View the next two weeks at a glance - H

Dec 14 - Dec 27’ 2025 oday 1eventin 1day < >

» Head over to viim.ai/events to see

upcoming office hours, meetups,

7 22 23 20 25 26 z conferences, etc.

Upcoming Events | 3

@ Dec 18, 2025 - 3:00 PM America/New_York g Jan 8, 2026 - 2:00 PM America/New_York @ Jan 15, 2026 - 2:00 PM America/New_York
VLLM Office Hours #38 VLLM Office Hours #39 VLLM Office Hours #40



http://vllm.ai/events

What is vLLM?

The High-Throughput and Memory-Efficient inference and serving engine for LLMs
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https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
http://slack.vllm.ai

vLLM-Omni v0.12.0rcl Pre-Release

https://github.com/vlim-project/vlim-omni/releases/tag/v0.12.0rc]
https://docs.vlim.ai/projects/vlim-omni/en/latest/

vLLM-Omni v0.12.0rc1 Release Notes

Production-Grade Multimodal Serving o 2
gﬂg'" £\

Image Speed

Wan2.2 Qwen TeaCache

Diffusion Engine Overhaul
OpenAl Compatible AP
TeaCache & Cache-DiT
AMD ROCm Support

\© / Commits e‘} Contributors
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https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://github.com/vllm-project/vllm-omni/releases/tag/v0.12.0rc1
https://docs.vllm.ai/projects/vllm-omni/en/latest/
https://docs.vllm.ai/projects/vllm-omni/en/latest/
https://docs.vllm.ai/projects/vllm-omni/en/latest/

vLLM Semantic Router vO.1“Iris” Release
https.//blog.vlim.ai/2026/01/05/vlim-sr-iris.ntml

vLLM Semantic Router v0.1
Codename Iris Released!

50+ Engineers
contributed
Rz worldwide

Requests
merged

’ Production-Ready Semantic Routing Platform

Transformative Milestone

(N N J vLLM Semantic Router

[user@nhostname ~1$ pip install vllm-sr

[user@hostname ~]$ vllm-sr init

[user@hostname ~]1$ vllm-sr serve

Run vLLM-SR in One Command at Anywhere!
https://pypi.org/project/vliim-sr



https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html
https://blog.vllm.ai/2026/01/05/vllm-sr-iris.html

Thanks to the many clean, from-scratch implementations of vLLM!
https://qgithub.com/GeeeekExplorer/nano-viim
https.//github.com/Wenyueh/MinivLLM
https://github.com/skyzh/tiny-Illm

7/

vLLM

Community Ecosystem

Nane,



https://github.com/GeeeekExplorer/nano-vllm
https://github.com/GeeeekExplorer/nano-vllm
https://github.com/GeeeekExplorer/nano-vllm
https://github.com/Wenyueh/MinivLLM
https://github.com/skyzh/tiny-llm
https://github.com/skyzh/tiny-llm
https://github.com/skyzh/tiny-llm

What's new in vLLM v0O.13.0

B 442 commits from 207 contributors, including 61 new contributors!

Model Support Engine Core

New models: BAGEL (AR only) ( ), AudioFlamingo3 ( ), Compilation via compile_ranges for selective kernel compilation (

JAIS 2 ( ), Nemotron latent MoE ( )- Prefix caching: xxHash high-performance hash option ( )-

Tool parsers: DeepSeek-V3.2 ( ), Gigachat 3 ( ), Holo2 Attention: PrefixLM support for FlexAttention ( ) and

reasoning ( ) TritonAttention ( ), CUDA graphs for 3D Triton attention (

Model enhancements: Qwen3-VL embeddings ( ), Qwen3-VL Batch invariance: FA2 and LoRA batch-invariant support ( ),

EVS (Efficient Video Sampling) ( ), DeepSeek V3.2 proper TRITON_MLA without prefix-caching ( )-

drop_thinking logic ( ) and top-k fix ( ) Pooling: Chunked prefill for ALL pooling tasks ( ), multi-vector

Task expansion: Automatic TokenClassification model conversion retrieval API ( ).

{ ), Ultravox v0.7 transformer projector ( ) Model Runner V2: Min-p ( ), NaN detection in logits (

Quantization: BitsAndBytes for Qwen3-Omni-MoE ( ). Speculative decoding: Medusa GPU-CPU sync avoidance (

Speculative decoding: Eagle/Eagle3 Transformers backend ( async spec-decode improvements ( )-

Mamba selective_state_update spec decode ( )- Whisper: ~3x speedup vs v0.12.0, Encoder batching ( ),
FuLL_DECODE_ONLY CUDA graph ( ), CPU support (
Performance: Fused blockwise quant RMS norm ( ), MoE LoRA
loading reduction ( ), encoder cache optimization ( ), CPU
KV offloading streams ( )-



https://github.com/vllm-project/vllm/pull/28439
https://github.com/vllm-project/vllm/pull/30539
https://github.com/vllm-project/vllm/pull/30188
https://github.com/vllm-project/vllm/pull/30203
https://github.com/vllm-project/vllm/pull/29848
https://github.com/vllm-project/vllm/pull/29905
https://github.com/vllm-project/vllm/pull/30048
https://github.com/vllm-project/vllm/pull/30037
https://github.com/vllm-project/vllm/pull/29752
https://github.com/vllm-project/vllm/pull/30490
https://github.com/vllm-project/vllm/pull/27568
https://github.com/vllm-project/vllm/pull/30666
https://github.com/vllm-project/vllm/pull/30089
https://github.com/vllm-project/vllm/pull/29896
https://github.com/vllm-project/vllm/pull/30340
https://github.com/vllm-project/vllm/pull/29488
https://github.com/vllm-project/vllm/releases/tag/v0.13.0
https://github.com/vllm-project/vllm/pull/24252
https://github.com/vllm-project/vllm/pull/29163
https://github.com/vllm-project/vllm/pull/27938
https://github.com/vllm-project/vllm/pull/30386
https://github.com/vllm-project/vllm/pull/28306
https://github.com/vllm-project/vllm/pull/30018
https://github.com/vllm-project/vllm/pull/29125
https://github.com/vllm-project/vllm/pull/27145
https://github.com/vllm-project/vllm/pull/26686
https://github.com/vllm-project/vllm/pull/30171
https://github.com/vllm-project/vllm/pull/30187
https://github.com/vllm-project/vllm/pull/29723
https://github.com/vllm-project/vllm/pull/29624
https://github.com/vllm-project/vllm/pull/29421
https://github.com/vllm-project/vllm/pull/30072
https://github.com/vllm-project/vllm/pull/30062
https://github.com/vllm-project/vllm/pull/27883
https://github.com/vllm-project/vllm/pull/30243
https://github.com/vllm-project/vllm/pull/30475
https://github.com/vllm-project/vllm/pull/29013

What's new in vLLM v0O.13.0

B 442 commits from 207 contributors, including 61 new contributors!

Hardware & Performance Large Scale Serving & Disaggregated Prefill/Decode

NVIDIA Blackwell Ultra SM103 (GB300) support ( )- KV connectors: Mooncake Transfer Engine ( ), cache reset via
Several DeepSeek/Kimi optimizations: /reset_prefix_cache ( ), KV events ( ), failure recovery
DeepEP High-Throughput CUDA graph enabled by default: 5.3% config ( ).
throughput, 4.4% TTFT improvement ( ) NIXL: Compatibility checking in handshake ( ), large batch proxy
DeepGEMM fused layout: 10.7% TTFT improvement ( ) support ( )-
DeepGEMM experts init: 3.9% TTFT improvement ( ) EPLB: NVFP4 support ( ), algorithm abstraction ( )-
group_topk kernel: 2% throughput improvement ( ) Multi-node: External launcher mode ( )-
Sparse prefill kernel for DeepSeek-V3.2 FP8 KV-cache ( Hybrid allocator: Optional KV connector integration ( )-
MLA FP8 Quant ( ), broadcast k_nope/k_pe ( ) Performance: silu_mul_per_token_group_quant_fp8 kernel for DP/EP
CPU: Whisper support ( ), Arm vectorized exp ( ), X86 { )-
CPU wheel pipeline ( )-
AMD ROCm: Aiter quantization kernels ( ), torch.compile
layernorm/silu + FP8 quant ( ), Triton ScaledMM fallback
{ ), MXFP4 w4a4 inference ( ).
Intel XPU: wNa16 compressed tensors ( )-
Build: CUDA 13 aarch64 wheels ( ), Docker kernel build stage
{ ), Ascend NPU Docker ( ).



https://github.com/vllm-project/vllm/pull/30484
https://github.com/vllm-project/vllm/pull/29558
https://github.com/vllm-project/vllm/pull/29546
https://github.com/vllm-project/vllm/pull/30494
https://github.com/vllm-project/vllm/pull/30159
https://github.com/vllm-project/vllm/pull/27532
https://github.com/vllm-project/vllm/pull/29795
https://github.com/vllm-project/vllm/pull/29710
https://github.com/vllm-project/vllm/pull/30062
https://github.com/vllm-project/vllm/pull/30068
https://github.com/vllm-project/vllm/pull/28848
https://github.com/vllm-project/vllm/pull/25552
https://github.com/vllm-project/vllm/pull/25693
https://github.com/vllm-project/vllm/pull/26668
https://github.com/vllm-project/vllm/pull/29775
https://github.com/vllm-project/vllm/pull/29484
https://github.com/vllm-project/vllm/pull/30341
https://github.com/vllm-project/vllm/pull/29452
https://github.com/vllm-project/vllm/pull/30015
https://github.com/vllm-project/vllm/releases/tag/v0.13.0
https://github.com/vllm-project/vllm/pull/24718
https://github.com/vllm-project/vllm/pull/27170
https://github.com/vllm-project/vllm/pull/28309
https://github.com/vllm-project/vllm/pull/26813
https://github.com/vllm-project/vllm/pull/29503
https://github.com/vllm-project/vllm/pull/28782
https://github.com/vllm-project/vllm/pull/29804
https://github.com/vllm-project/vllm/pull/26471
https://github.com/vllm-project/vllm/pull/29833
https://github.com/vllm-project/vllm/pull/29805
https://github.com/vllm-project/vllm/pull/29470

What's new in vLLM v0O.13.0

B 442 commits from 207 contributors, including 61 new contributors!

API & Frontend Breaking Changes & Deprecations

Responses API: MCP type infrastructure ( ), Browser/Container  This release includes deprecation removals, PassConfig flag renames, and
MCP tools ( ), full MCP Python loop ( ), extra body attention configuration changes from environment variables to CLI arguments.
parameters ( ) Please review the breaking changes section carefully before upgrading.

Configuration: AttentionConfig replaces VLLM_ATTENTION_BACKEND env var
( ) PassConfig flags renamed per RFC ( )

Attention env vars — CLI args: VLLM_ATTENTION_BACKEND replaced with --
attention-backend ( )

). Removed -0.xx flag ( )

Removed deprecated plugin/compilation fields ( )

Removed deprecated task, seed, MM settings ( )

Removed embed_input_ids/embed_multimodal fallbacks (

Removed tokenizer setter ( )

Deprecations: merge_by_field_config ( ), --convert reward

Chat templates: DeepSeek-V3.2 ( ), DeepSeek-V3.2 developer
tools ( )-

Anthropic API: Streaming fixes ( ,
Embeddings: Binary format with encoding_format=bytes_only (
multiple image/audio per request ( ), tokenization_kwargs
override ( )-

Metrics: Prefill KV compute metric excluding cached tokens (
Profiling: Layer-wise NVTX ( ), profiling CLI config (

UX: Better OOM errors ( ), ModelConfig validation ( — --convert embed ( )
distributed executor errors ( )



https://github.com/vllm-project/vllm/pull/30054
https://github.com/vllm-project/vllm/pull/29989
https://github.com/vllm-project/vllm/pull/29798
https://github.com/vllm-project/vllm/pull/30532
https://github.com/vllm-project/vllm/pull/26315
https://github.com/vllm-project/vllm/pull/29837
https://github.com/vllm-project/vllm/pull/30040
https://github.com/vllm-project/vllm/pull/29971
https://github.com/vllm-project/vllm/pull/30266
https://github.com/vllm-project/vllm/pull/30249
https://github.com/vllm-project/vllm/pull/29988
https://github.com/vllm-project/vllm/pull/29794
https://github.com/vllm-project/vllm/pull/30189
https://github.com/vllm-project/vllm/pull/29990
https://github.com/vllm-project/vllm/pull/29912
https://github.com/vllm-project/vllm/pull/28051
https://github.com/vllm-project/vllm/pull/30213
https://github.com/vllm-project/vllm/pull/30140
https://github.com/vllm-project/vllm/releases/tag/v0.13.0
https://github.com/vllm-project/vllm/issues/27995
https://github.com/vllm-project/vllm/pull/29646
https://github.com/vllm-project/vllm/pull/26315
https://github.com/vllm-project/vllm/pull/29991
https://github.com/vllm-project/vllm/pull/30396
https://github.com/vllm-project/vllm/pull/30397
https://github.com/vllm-project/vllm/pull/30458
https://github.com/vllm-project/vllm/pull/30400
https://github.com/vllm-project/vllm/pull/30035
https://github.com/vllm-project/vllm/pull/30170
https://github.com/vllm-project/vllm/pull/30463

n

Thank you to the over 2000 contributors!
https://blog.vlim.ai/2025/12/15/vlim-epd.html



https://blog.vllm.ai/2025/12/15/vllm-epd.html
https://blog.vllm.ai/2025/12/15/vllm-epd.html
https://blog.vllm.ai/2025/12/15/vllm-epd.html

A thank you gift: PR Release Finder

Ever wondered "Which release first included my PR?"

Just enter your PR number or URL to track your code's journey into production.

vlim.ai/pr-lookup

Supports: PR number (12345), with hash (#12345), or GitHub PR URL

4‘ #30983 @ | Merged

Check for truthy ‘rope_parameters’ not the existence of it
by hmellor - Merged Dec 19, 2025 by simon-mo

bug ready

0 v Released

This PR is first available in:

© ve.13.0 &

Also included in all subsequent releases.


http://vllm.ai/pr-lookup
http://vllm.ai/pr-lookup
http://vllm.ai/pr-lookup

Today's special topic:

Intro to batch invariance in vLLLM

A
N\
Wentao Ye Bram Wasti
Machine Learning Engineer, Red Hat Software Engineer, Meta

vLLM Committer vLLM contributor




Why does this happen?

Question: [

"Let $AS, $BS$, $C$, and $D$ be point on the hyperbola: ......
Greedy, Seed=42, BS=32, #GPU=4

Find the greatest real number that is less than $BD”2$ for all such rhombi."
]
Okay, so | have this problem ... perpendicular, but in a square,
. ... for all such rhombi is \(\\boxed{480}\).
®
BF16
\[ Okay, so | have this problem ... perpendicular. Wait, no, hold on,

Greedy, Seed=42, BS=8, #GPU=4

Even with a fixed seed and temperature=07?



Reason 1: Rounding errors of Floating Points

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

ojojojojojojojojofjoj1jyo0jojojojojojojojt1j1]1jo

Sign: 1 Bit Exponent: 8 Bits 23 Bits
IEEE 754 Half Precision 16-bit Float (IEEE FP16)

ojojojojojojojo}|oO]|1

Sign: 1 Bit Exponent: 5 Bits 10 Bits ! Value = (-1)5197 x (1 + ) x 2Exponent - bias
Google Brain Float (BFloat16 or BF16) :

ojojojojojo}|o

Sign: 1 Bit  Exponent: 8 Bits 7 Bits

Precision Decimal Rounding Error
FP32 1.00012004375457761 ~ +4.38e—8
FP16 1.0 ~ —(0.00012

BF16 1.0 ~ —0.00012




Reason 2: Non-Associativity

Example Sum Order FP32 BF16
a.b.c=01,—0.1,0.2 a+b+c 00I11110010011001100110011001101 0011111001001101
a+c+b 00111110010011001100110011001110 0011111001001110
a.b.c = 0.0016.0.0027. 1.0 a+b+c 00111111100000001000110011100111  0011111110000001
a+c+b 00111111100000001000110011100111  0011111110000000




Reason 1+2 -> Reduction order matters

,
My
.
oy, ;
~ add

S
‘l.\_\._\.-\..

Sum with atomic add on GPU
Guaranteed for all elements, but the order might change



Reason 3: Continuous Batching

User request — Deterministic

WV

Model

Vv

Output

K
(-
_/

Other user requests

For LLM inference:
No atomic add operator during forward, good for single request



Reason 3: Continuous Batching

Nondeterministic
User request — Deterministic
\ N LY
7 > Model > Output
Other user requests —

Batching multiple requests together matters



Reason 3: Continuous Batching

Tq

A
s

-

>4

Naive batching, where would S5 be?



Reason 3: Continuous Batching

T Ta T3 Tq To Ty Top Ty
g' S! |

Sy|Sy

Sk 7

54| Sy S‘l% |

S5 now starts in a different place



How to solve this? Batch invariance

== <=

$ VLLM_BATCH_INVARIANT=0 python invariance_test.py
Logprob difference: 0.0000052527

$ VLLM_BATCH_INVARIANT=1 python invariance_test.py
Logprob difference: 0.0000000000

It ensures the output of a model is deterministic and independent of the
batch size or the order of requests in a batch (fixed reduction order).



How to Achieve Batch Invariance?

$ VLLM_BATCH_INVARIANT=0 python invariance_test.py
Logprob differenc 0.0000052527
$ VLLM_BATCH_INVARIANT=1 python invariance_test.py

Logprob difference: 0.0000000000

Make every kernel involving reductions batch invariant

For LLM inference, three kernels dominate
-  RMSNorm
- Matrix Mul
- Attention



Key 1: RMSNorm y = x - rsqrt (mean(xQ) + e) cw

Features

-.-.- In naive solution, parallel through rows

- .....

N
4

Reduction




Key 1: RMSNorm y = x - rsqrt (mean(xQ) + e) cw

Features

| |
- HERN
===. In large batch, this works well
Batch ......
BEEEN
HES

hY

Reduction




Key 1: RMSNorm y = x - rsqrt (mean(:cQ) + e) cw

Features

In small batch, wasting
compute resources




Key 1: RMSNorm y = x - rsqrt (mean(:cQ) + e) cw

Features
| |
- == =.

In small batch, we usually optimize using Split-K




Key 1: RMSNorm y = x - rsqrt (mean(:cQ) + e) cw

Features
| |
- == =.

However, as x grows, the reduction order changes




Key 1: RMSNorm y = x - rsqrt (mean(a:Q) + e) cw

Features

The easiest way is just not to do the split and keep the order




Key 2: Matrix Mul

Y:XW, XERMXK, WERKXN, Y GRMXN

Batch (M)

N
d

The naive matrix mul follows the batch invariant logic, good for large batch



Key 2: Matrix Mul N

Y:XW, XERMXK, WERKXN, Y GRMXN

Similar problem when batch size is small




. _ MxK KxN MxN
Key 2: Matrix Mul Y=XW, XeR"", WeR", YeR"

Batch (M) 1357 2468 %ﬂ%%

In small batch, we usually optimize using Split-K




. _ MxK KxN MxN
Key 2: Matrix Mul Y=XW, XeR"", WeR", YeR"

Batch (M) 1357 2468 %ﬂ%%

This breaks the order of reduction as K grows




Key 2: Matrix Mul N

Y:XW, XERMXK, WERKXN,YERMXN

Solution: compile one kernel configuration and use that for all
shapes (fixed tile, fixed split-k etc)




Key 3: Attention 5 _ SoftmaX(QK T) o
Vd

Parallel along Q in naive solution,
which is good for batch invariance

H N

Scores / P

O




Key 3: Attention 5 _ SoftmaX(QK T) o

Vd

V cache

(L1,D) (L2,D) (L1+L2,D)
K cache K K

H EES
Nl

P cache P 9] Scores / P

Q

Calculation for K, then added to the K-V cache




Key 3: Attention

-
O = softmaX(QK ) V
Vd

-l HEE =

Similar problem when batch is small



Key 3: Attention O — softmax( QK T) %
Vd

(1000,D) .
250 250 250 250

Il H B
- HETH X

We usually optimize using Split-K

L
N




Key 3: Attention 5 _ SoftmaX(QK T) o
Vd

K (L,D) . \V

250 250 250 250

BN H N
- HETH X

Determinism broken as L increases

L
N




Key 3: Attention 5 _ SoftmaX(QK T) o
Vd

v I .
v So we should use a fixed split size

i . | e.g., 256
II X

256 256 256




Key 3: Attention 5 _ SoftmaX(QK T) o
Vd

K
250 250 250 250

Q

Detailed comparison

256 256 256

II X

. M,

aam

N




Batch invariance summary

e A )
g\v a

$ VLLM_BATCH_INVARIANT=0 python invariance_test.py
Logprob difference: 0.0000052527

$ VLLM_BATCH_INVARIANT=1 python invariance_test.py
Logprob difference: 0.0000000000

Every kernel is batch invariant, with fixed reduction order

**Simplified due to time constraints.



Tracking the Latest Updates

= O vilm-project / vllm

<> Code (© Issues 18k 17 Pullrequests 13k 0 Discussions () Actions [ Projects 26

[Feature]: Batch Invariant Feature and Performance Optimization #27433  ** | Newisse

@ Security 43 |~ Insights &3 Settings

e yewentao256 opened on Oct 23, 2025 - edited by yewentao256 Edits ¥  Member **

&7 The feature, motivation and pitch

We have basically support Batch Invariant based on https://thinkingmachines.ai/blog/defeating-nondeterminism-in-lim-inference/

[ Batch-invariant Inference (view)

But there are still some work to be done, so here is the issue to track the work

TODOs:

Basic framework = Kernel-override Determinism [1/n] #25603 @bwasti e

Flashinfer support $= [unrevert] Add batch invariant kernel override for Flashinfer backend [2/n] #26373 @b

Deepseek-v3 }= Deepseek-v3 Batch Invariant on 8xH100 #26609 @bwasti

DeepGEMM on Blackwell $ [Feature] Batch Invariant: Support DeepGEMM and Blackwell #27127 @yewentao256 e

Batch Invariant for R1 TP 8 on Blackwell ¥~ [Feature] Batch Invariant for R1 TP 8 on Blackwell #27229 256 soe

Y

Torch compile & Cuda Graph support §~ [Feature] Batch invariant torch.compile #27660 @PaulZhang12

Usability & Documentation @bwasti § Batch invariance doc #27839 ose

https://qithub.com/vlim-project/viim/issues/27433
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Contribution to Batch Invariance in vLLM

Tested Models ¢

Batch invariance has been tested and verified on the following models:

» DeepSeek series: deepseek-ai/DeepSeek-V3, deepseek-ai/DeepSeek-V3-0324, deepseek-
ai/DeepSeek-R1, deepseek-ai/DeepSeek-V3.1
» Qwen3 (Dense): Qwen/Qwen3-1.7B, Qwen/Qwen3-8B

e Qwen3 (MoE): Qwen/Qwen3-30B-A3B, Qwen/Qwen3-Next-80B-A3B-Instruct

e Llama 3: meta-1lama/Llama-3.1-8B-Instruct, meta-1llama/Llama-3.2-1B-Instruct

Help needed for validations of more models.

1. Test a model using the current script
2. Submit a PR updating the document

https://github.com/vlim-project/vlim/issues/27433
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Bitwise Consistent On-Policy Reinforcement
Learning with vLLM + TorchTitan



Reinforcement Learning (Basics)

reward action
A,

Environment

Ignore all these variable letter choices P



Reinforcement Learning (PPO)
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https://arxiv.org/abs/1707.06347

Advantage calculation is tricky



Reinforcement Learning (PPO -> GRPO)
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Reinforcement Learning (IS Weights)

Running off-policy needs a correction term!
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https://lilianweng.github.io/posts/2018-04-08-policy-gradient/#trpo



Reinforcement Learning (GRPO)

- Sparse rewards, last step in training pipeline

- Huge dependency on the execution of the main model
- Correction terms galore, masking numerical instability
- This blog comes out...

Your Efficient RL Framework Secretly
Brings You Off-Policy RL Training

Feng Yao* Liyuan Liu* Dinghuai Zhang Chengyu Dong Jingbo Shang Jianfeng Gao

*: Equal Contributions (Work in Progress)

https://fengyao.notion.site/off-policy-rl



Reinforcement Learning (numerical exactness)

What if we ditch correction terms and use batch invariance?

$ VLLM_BATCH_INVARIANT=1 python simple_rl.py

Adding requests: 100%]| | 10/10 [00:00<00:00, 233.70i1t/s]
Processed prompts: 100%| | 80/80 [00:02<00:00, 37.71it/s,

est. speed input: 2458.55 toks/s, output: 3770.77 toks/s]

v VLLM-TorchTitan bitwise determinism verified: 100 tokens match exactly

Step 479 | Loss: -0.0016 | Reward: +0.975 | Samples: 80

Sample: Natalia sold 48 clips April. In May, she sold half as many clips as
Aprtl's ...

https://blog.vlim.ai/2025/11/10/bitwise-consistent-train-inference.html



Reinforcement Learning (numerical exactness)

Works!
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https://blog.vlim.ai/2025/11/10/bitwise-consistent-train-inference.html



Other stability tricks / Next Steps

Important to note: there are other ways to stabilize RL training

- Other types of IS weights
- Use fp16 https://arxiv.org/pdf/2510.26788
- Rejection sampling magic

Next Steps

- Improve performance / hardware support
- Improve compilation support (native PyTorch)
- Figure out a unification scheme for training/inference


https://arxiv.org/pdf/2510.26788

55

Get involved with the vLLM Community

Contribute to key VvLLM features
Comment and review PRs that are interesting to you. Join the discussion
on RFCs. Check out “good first issue” tags.

Give Us Feedback

We'll email you today’s recording as soon as it's ready. Respond and tell
us what we are doing right and what we can do better with vLLLM office
hours. Or comment on this slide!

Join VLLM Developer Slack
Ask questions and engage with us via Slack. Join here.

Join Red Hat's vLLM Mission

Red Hat wants to bring open-source LLMs and VvLLM to every enterprise
on the planet. We are looking for vLLM Engineers to help us accomplish
our mission. Apply here.


https://github.com/vllm-project/vllm/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22
https://slack.vllm.ai/
https://www.redhat.com/en/jobs

Thank you, and see you in

two weeks!

I \

N
Michael Goin Sasa Zelenovic Wentao Ye
Principal Engineer, Red Hat Principal PMM, Red Hat Machine Learning Engineer, Red Hat

vLLM Committer vLLM Committer

Bram Wasti

Software Engineer, Meta
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